25 research outputs found

    Towards the interpretability of deep learning models for human neuroimaging

    Get PDF
    Brain-age (BA) estimates based on deep learning are increasingly used as neuroimaging biomarker for brain health; however, the underlying neural features have remained unclear.We combined ensembles of convolutional neural networks with Layer-wise Relevance Propagation (LRP) to detect which brain features contribute to BA. Trained on magnetic resonance imaging (MRI) data of a population-based study (n=2637, 18-82 years), our models estimated age accurately based on single and multiple modalities, regionally restricted and whole-brain images (mean absolute errors 3.37-3.86 years). We find that BA estimates capture aging at both small and large-scale changes, revealing gross enlargements of ventricles and subarachnoid spaces, as well as lesions, iron accumulations and atrophies that appear throughout the brain. Divergence from expected aging reflected cardiovascular riskfactors and accelerated aging was more pronounced in the frontal lobe. Applying LRP, our study demonstrates how superior deep learning models detect brain-aging in healthy and at-risk individuals throughout adulthood

    Towards the interpretability of deep learning models for multi-modal neuroimaging: Finding structural changes of the ageing brain

    Get PDF
    Brain-age (BA) estimates based on deep learning are increasingly used as neuroimaging biomarker for brain health; however, the underlying neural features have remained unclear. We combined ensembles of convolutional neural networks with Layer-wise Relevance Propagation (LRP) to detect which brain features contribute to BA. Trained on magnetic resonance imaging (MRI) data of a population-based study (n=2637, 18-82 years), our models estimated age accurately based on single and multiple modalities, regionally restricted and whole-brain images (mean absolute errors 3.37-3.86 years). We find that BA estimates capture aging at both small and large-scale changes, revealing gross enlargements of ventricles and subarachnoid spaces, as well as white matter lesions, and atrophies that appear throughout the brain. Divergence from expected aging reflected cardiovascular risk factors and accelerated aging was more pronounced in the frontal lobe. Applying LRP, our study demonstrates how superior deep learning models detect brain-aging in healthy and at-risk individuals throughout adulthood

    Human-computer collaboration for skin cancer recognition

    Get PDF
    The rapid increase in telemedicine coupled with recent advances in diagnostic artificial intelligence (AI) create the imperative to consider the opportunities and risks of inserting AI-based support into new paradigms of care. Here we build on recent achievements in the accuracy of image-based AI for skin cancer diagnosis to address the effects of varied representations of AI-based support across different levels of clinical expertise and multiple clinical workflows. We find that good quality AI-based support of clinical decision-making improves diagnostic accuracy over that of either AI or physicians alone, and that the least experienced clinicians gain the most from AI-based support. We further find that AI-based multiclass probabilities outperformed content-based image retrieval (CBIR) representations of AI in the mobile technology environment, and AI-based support had utility in simulations of second opinions and of telemedicine triage. In addition to demonstrating the potential benefits associated with good quality AI in the hands of non-expert clinicians, we find that faulty AI can mislead the entire spectrum of clinicians, including experts. Lastly, we show that insights derived from AI class-activation maps can inform improvements in human diagnosis. Together, our approach and findings offer a framework for future studies across the spectrum of image-based diagnostics to improve human-computer collaboration in clinical practice

    Interpretable deep neural networks for single-trial EEG classification

    No full text
    Background In cognitive neuroscience the potential of deep neural networks (DNNs) for solving complex classification tasks is yet to be fully exploited. The most limiting factor is that DNNs as notorious ‘black boxes’ do not provide insight into neurophysiological phenomena underlying a decision. Layer-wise relevance propagation (LRP) has been introduced as a novel method to explain individual network decisions. New method We propose the application of DNNs with LRP for the first time for EEG data analysis. Through LRP the single-trial DNN decisions are transformed into heatmaps indicating each data point's relevance for the outcome of the decision. Results DNN achieves classification accuracies comparable to those of CSP-LDA. In subjects with low performance subject-to-subject transfer of trained DNNs can improve the results. The single-trial LRP heatmaps reveal neurophysiologically plausible patterns, resembling CSP-derived scalp maps. Critically, while CSP patterns represent class-wise aggregated information, LRP heatmaps pinpoint neural patterns to single time points in single trials. Comparison with existing method(s) We compare the classification performance of DNNs to that of linear CSP-LDA on two data sets related to motor-imaginary BCI. Conclusion We have demonstrated that DNN is a powerful non-linear tool for EEG analysis. With LRP a new quality of high-resolution assessment of neural activity can be reached. LRP is a potential remedy for the lack of interpretability of DNNs that has limited their utility in neuroscientific applications. The extreme specificity of the LRP-derived heatmaps opens up new avenues for investigating neural activity underlying complex perception or decision-related processes

    Evaluating the Visualization of What a Deep Neural Network Has Learned

    No full text
    Deep neural networks (DNNs) have demonstrated impressive performance in complex machine learning tasks such as image classification or speech recognition. However, due to their multilayer nonlinear structure, they are not transparent, i.e., it is hard to grasp what makes them arrive at a particular classification or recognition decision, given a new unseen data sample. Recently, several approaches have been proposed enabling one to understand and interpret the reasoning embodied in a DNN for a single test image. These methods quantify the "importance" of individual pixels with respect to the classification decision and allow a visualization in terms of a heatmap in pixel/input space. While the usefulness of heatmaps can be judged subjectively by a human, an objective quality measure is missing. In this paper, we present a general methodology based on region perturbation for evaluating ordered collections of pixels such as heatmaps. We compare heatmaps computed by three different methods on the SUN397, ILSVRC2012, and MIT Places data sets. Our main result is that the recently proposed layer-wise relevance propagation algorithm qualitatively and quantitatively provides a better explanation of what made a DNN arrive at a particular classification decision than the sensitivity-based approach or the deconvolution method. We provide theoretical arguments to explain this result and discuss its practical implications. Finally, we investigate the use of heatmaps for unsupervised assessment of the neural network performance

    Foreign direct investment, capital formation and labour costs Evidence from Britain and Germany

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:3597.1206(336) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Layer-wise relevance propagation for neural networks with local renormalization layers

    No full text
    Layer-wise relevance propagation is a framework which allows to decompose the prediction of a deep neural network computed over a sample, e.g. an image, down to relevance scores for the single input dimensions of the sample such as subpixels of an image. While this approach can be applied directly to generalized linear mappings, product type non-linearities are not covered. This paper proposes an approach to extend layer-wise relevance propagation to neural networks with local renormalization layers, which is a very common product-type non-linearity in convolutional neural networks. We evaluate the proposed method for local renormalization layers on the CIFAR-10, Imagenet and MIT Places datasets
    corecore